Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields.
نویسندگان
چکیده
PURPOSE To compare the ability of several machine learning classifiers to predict development of abnormal fields at follow-up in ocular hypertensive (OHT) eyes that had normal visual fields in baseline examination. METHODS The visual fields of 114 eyes of 114 patients with OHT with four or more visual field tests with standard automated perimetry over three or more years and for whom stereophotographs were available were assessed. The mean (+/-SD) number of visual field tests was 7.89 +/- 3.04. The mean number of years covered (+/-SD) was 5.92 +/- 2.34 (range, 2.81-11.77). Fields were classified as normal or abnormal based on Statpac-like methods (Humphrey Instruments, Dublin, CA) and by several machine learning classifiers. The machine learning classifiers were two types of support vector machine (SVM), a mixture of Gaussian (MoG) classifier, a constrained MoG, and a mixture of generalized Gaussian (MGG). Specificity was set to 96% for all classifiers, using data from 94 normal eyes evaluated longitudinally. Specificity cutoffs required confirmation of abnormality. RESULTS Thirty-two percent (36/114) of the eyes converted to abnormal fields during follow-up based on the Statpac-like methods. All 36 were identified by at least one machine classifier. In nearly all cases, the machine learning classifiers predicted the confirmed abnormality, on average, 3.92 +/- 0.55 years earlier than traditional Statpac-like methods. CONCLUSIONS Machine learning classifiers can learn complex patterns and trends in data and adapt to create a decision surface without the constraints imposed by statistical classifiers. This adaptation allowed the machine learning classifiers to identify abnormality in visual field converts much earlier than the traditional methods.
منابع مشابه
Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry.
PURPOSE To determine which machine learning classifier learns best to interpret standard automated perimetry (SAP) and to compare the best of the machine classifiers with the global indices of STATPAC 2 and with experts in glaucoma. METHODS Multilayer perceptrons (MLP), support vector machines (SVM), mixture of Gaussian (MoG), and mixture of generalized Gaussian (MGG) classifiers were trained...
متن کاملUnsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields.
PURPOSE To determine whether a variational Bayesian independent component analysis mixture model (vB-ICA-mm), a form of unsupervised machine learning, can be used to identify and quantify areas of progression in standard automated perimetry fields. METHODS In an earlier study, it was shown that a model using vB-ICA-mm can separate normal fields from fields with six different patterns of visua...
متن کاملUnsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects.
PURPOSE We previously reported the use of clustering by unsupervised learning with machine learning classifiers to segment clusters of patterns in standard automated perimetry (SAP) for glaucoma. In this study, the process of unsupervised learning by independent component analysis decomposed SAP field patterns into axes, and the information represented by these axes was evaluated. METHODS SAP...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 43 8 شماره
صفحات -
تاریخ انتشار 2002